Thursday, November 10, 2011

Study characterizes epigenetic signatures of autism in brain tissue

ScienceDaily (Nov. 7, 2011) ? Neurons in the prefrontal cortex of individuals with autism show changes at numerous sites across the genome, according to a study being published Online First by the Archives of General Psychiatry, one of the JAMA/Archives journals.

Autism spectrum disorders are a group of complex illnesses with different causes and origins. Neuronal dysfunction in the cerebral cortex and other regions of the brain could contribute to the cognitive and behavioral defects in autism, according to background information in the article. Neurons are nerve cells that send and receive electrical signals within the body.

Hennady P. Shulha, Ph.D., of the University of Massachusetts Medical School, Worcester, Mass., and colleagues examined the postmortem brain tissue of 16 individuals diagnosed with autism spectrum disorder (average age 17.4 years; range 2 to 60 years) and 16 controls without autism (ranging in age from less than one year to 70 years). The tissue was obtained through the Autism Tissue Program.

The study searched, on a genome-wide scale, for genes that show an abnormal epigenetic signature -- specifically histone methylation. Histones are small proteins attached to the DNA that control gene expression and activity. While genetic information is encoded by the (genome's) DNA sequence, methylation and other types of histone modifications regulate genome organization and gene expression. The study found hundreds of loci (the places genes occupy on chromosomes) across the genome affected by altered histone methylation in the brains of autistic individuals. However, only a small percentage -- less than 10 percent -- of the affected genes were affected by DNA mutations. It remains to be determined whether or not genetic changes elsewhere in the genome contributed to the observed epigenetic changes, or whether non-genetic factors were responsible for the disease process in some of the affected individuals.

"Prefrontal cortex neurons from subjects with autism show changes in chromatin (the substance of chromosomes) structures at hundreds of loci genome-wide, revealing considerable overlap between genetic and epigenetic risk maps of developmental brain disorders," the authors conclude.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by JAMA and Archives Journals.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. H. P. Shulha, I. Cheung, C. Whittle, J. Wang, D. Virgil, C. L. Lin, Y. Guo, A. Lessard, S. Akbarian, Z. Weng. Epigenetic Signatures of Autism: Trimethylated H3K4 Landscapes in Prefrontal Neurons. Archives of General Psychiatry, 2011; DOI: 10.1001/archgenpsychiatry.2011.151

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/~3/tbDEfhkTk0c/111107162734.htm

eagles magic johnson philadelphia eagles jessica chastain jessica chastain nook tablet involuntary manslaughter

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.